
An approach for semiautomatic locality
optimizations using OpenMP

Jens Breitbart1

1Research Group Programming Languages / Methodologies
Universität Kassel
Kassel, Germany

jbreitbart@uni-kassel.de

Abstract. The processing power of multicore CPUs increases at a high
rate, whereas memory bandwidth is falling behind. Almost all modern
processors use multiple cache levels to overcome the penalty of slow main
memory; however cache efficiency is directly bound to data locality. This
paper studies a possible way to incorporate data locality exposure into
the syntax of the parallel programming system OpenMP. We study data
locality optimizations on two applications: matrix multiplication and
Gauß-Seidel stencil. We show that only small changes to OpenMP are
required to expose data locality so a compiler can transform the code.
Our notion of tiled loops allows developers to easily describe data local-
ity even at scenarios with non-trivial data dependencies. Furthermore,
we describe two new optimization techniques. One explicitly uses a form
of local memory to prevent conflict cache misses, whereas the second one
modifies the wavefront parallel programming pattern with dynamically
sized blocks to increase the number of parallel tasks. As an additional
contribution we explore the benefit of using multiple levels of tiling.

1 Introduction

In the last years multicore CPUs became the standard processing platform for
both end user systems and clusters. However, whereas the available processing
power in CPUs continues to grow at a rapid rate, the DRAM memory bandwidth
is increasing rather slowly. CPUs use multiple levels of fast on-chip cache memory
to overcome the penalty of the slow main memory. Caches, however, are only
useful if the program exposes data locality, so reoccurring accesses to the data
may be fetched from cache instead of main memory.

Parallel programming without considering data locality provides far from
optimal performance even on systems based on Intel’s Nehalem architecture,
which provides a highly improved memory subsystem compared to all previ-
ous Intel architectures. In this paper we use two well-known applications – a
matrix-matrix multiplication and a Gauß-Seidel stencil – to demonstrate tiling
and its effect. We utilize two levels of tiling to increase performance in scenarios
for which single-level tiling is not already close to the maximum memory/cache

Test copy scale add triad

Bandwidth (MB/s) 18463 19345 17949 18356
Table 1. Memory bandwidth of the test system measured with the STREAM bench-
mark.

bandwidth. Explicit tiling is a technique to overcome conflict cache misses. Ex-
plicit tiling requires duplicating data, but still offers an overall increase in per-
formance. Furthermore we provide an example to demonstrate how the shown
locality optimizations can be integrated into e. g. the OpenMP syntax with only
small changes. The approach however is not limited to OpenMP and could be
implemented into other pragma-based systems or as a standalone system, as
well. As a result of our OpenMP enhancements, developers must only hint the
compiler at what kind of changes are required to achieve the best performance.
We expect this to ease locality optimizations. At the time of this writing, the
changes have not been implemented in a compiler, but the required transforma-
tions are described in detail.

The paper is organized as follows. First, Sect. 2 describes the hardware used
for our experiments. Our applications, and the used locality optimizations and
results are shown in Sect. 3 for matrix multiplication and in Sect. 4 for the Gauß-
Seidel stencil, respectively. Section 5 describes the changes to OpenMP to allow
compilers to automatically change code the way we have described in Sects. 3
and 4. The paper finishes with an overview of related work and conclusions, in
Sects. 6 and 7, respectively.

2 Hardware setup

All experiments shown were conducted at an Intel Core i7 920, which is a CPU
based on the Nehalem architecture. It is a quad core CPU running at 2.67 GHz
using a three-ary cache hierarchy. The level 3 cache can store up to 8 MB of
data and is shared by all cores of the CPU. In contrast every core has its own
level 2 (256 KB) and level 1 cache (32 KB for data). The caches are divided into
cache lines of 64 bytes, so in case a requested data element is not in the cache,
the system fetches the cache line storing it from main memory. Both level 1 and
level 2 cache are 8-way associative. The level 3 cache is 16-way associative. The
Nehalem is Intel’s first x86 architecture featuring an on-chip memory controller
to lower memory access latency. Table 2 shows memory bandwidth measured
with the STREAM benchmark [McC95] using 4 threads. We used three memory
channels supplied with DDR3-1333 memory modules. Each CPU core provides
additional hardware support to run up to two threads efficiently (SMT), so the
CPU supports up to 8 threads effectively.

3 Matrix multiplication

We describe our first set of locality optimizations, for which OpenMP pragmas
are shown in Sect. 5. Their performance is shown by implementing them in a

trivial matrix-matrix multiplication calculating A ∗ B = C with A, B, and C
being square matrices of size n. Our trivial implementation uses three nested
loops, which are ordered i-k-j with the i- and j-loop looping over C and the
k-loop being used to access a column/row of A/B. This loop order allows for easy
automatic vectorization and good data locality, for details see e. g. [Wol95]. The
parallelization of the matrix multiplication is obvious, as each matrix element
can be calculated independently.

The trivial matrix multiplication algorithm is well-known to have low memory
locality, since successive accesses to elements of A, B are too far away to keep
data in cache [Wol95]. A well-known optimization to improve data locality and
cache reuse in such scenarios is tiling [BGS94], also known as loop blocking.
Tiling divides the loop iteration space into tiles and transforms the loop to
iterate over the tiles. Thereby a loop is split into two loops: an outer loop which
loops over tiles and an inner loop which loops over the elements of a tile. We
applied loop tiling to our matrix multiplication and refer to the tiles as Asub,
Bsub and Csub, respectively.

Tiling improves the performance of our matrix multiplication in almost all
cases. Measurements (not depicted here) show that there are hardly any L2
cache misses, but the performance suffers from regular L1 cache misses. The
phenomenon is measured at any block size, even when choosing a block size that
fits into the L1 data cache and its impact is at maximum, when the matrix size is
a power of two. Therefore, we expect these misses to be conflict misses, as array
sizes of a power of two are worst case scenarios for current CPU caches [CSG98].
Conflict misses arise due to the associativity of the cache, meaning that there are
multiple data elements in Asub and Bsub that are mapped to the same position in
the cache and thereby replace each other even though there is enough space in the
cache available. To resolve this problem we propose a new optimization technique
called explicit blocking that is inspired by the OpenCL programming system.
OpenCL uses local memory that is local to processing units and allocated in
on-chip memory. In explicit blocking we allocate an array to store the data used
during the calculation – in our example we allocate an array of size blocksize ∗
blocksize to store both Asub and Bsub and copy the submatrix from A/B to
the newly allocated array. In the calculation we only access the newly allocated
arrays. We cannot allocate these blocks in on-chip memory in current CPUs,
however by using this technique we no longer suffer from conflict cache misses
during the calculations.

To improve the performance further, we added a second level of tiling. We
refer to this optimization as multilevel tiling. We combined small explicitly tiled
blocks that fit into L1 cache with larger tiles that help to increase data locality
in L2 and L3 cache. Our final implementation thereby uses large blocks that are
split into smaller subblocks.

Figure 1 shows the performance of our code with the matrix data being
stored in a one dimensional array, compiled with the Intel Compiler version 11.1.
The performance was measured using matrices of size 81922 at both single and
double precision. We compare our results with two libraries: Intel’s Math Kernel

Fig. 1. Matrix multiplication performance (matrix size: 81922)

Library1 (MKL) and TifaMMy [BFGH07]. Both libraries use hand-tuned code
and thereby obviously outperform our implementation, which purely relies on
the Intel compiler to generate optimized code. TifaMMy has not been optimized
for Nehalem-based CPUs and therefore falls behind Intel’s MKL. Our trivial
version consists only of three nested loops, however the compiler automatically
applies tiling to the loop.

The code changes to achieve the performance increase are rather trivial, but
yet require writing multiple lines of code. For example applying explicit tiling
requires developers to create two new arrays and to copy data. Even though the
implementation is simple, it is still a source of bugs. Furthermore, the compiler
did not automatically detect that these transformations should be applied and
OpenMP does not offer us a way to express these. Some compilers offer ways
to specify loop tiling, however using compiler specific options obviously is not-
compiler compatible and even interfere with the OpenMP parallelization in an
unpredictable way.

4 Gauß-Seidel stencil

The calculations of the Gauß-Seidel stencil are being applied on a two-dimensional
data matrix V with the borders having fixed values. The non-border element with
the coordinates (x, y) in the kth iteration is calculated by

V k
x,y =

V k
x−1,y + V k−1

x+1,y + V k−1
x,y−1 + V k

x,y+1

4
.

This calculation is repeated for a fixed number of steps or until it converges.
Considering the low arithmetic intensity of the calculations, it should come at
no surprise that the runtime is limited by memory bandwidth and not by the
available processing power. We consider a bandwidth-limited application an in-
teresting scenario, as the gap between available processing power and memory

1 http://software.intel.com/en-us/intel-mkl/

Vx,y+1

Vx−1,y

Vx,y−1

Vx,y Vx+1,y
(k−1)

(k−1)

(k)

(k)

(a) Gauß-Seidel data
dependencies

1

3

3

2

2

3 4

4

5

(b) Wavefront pattern

Fig. 2. Gauß-Seidel

bandwidth is increasing and more scenarios will become bandwidth-limited in
the future.

We measure the performance of the Gauß-Seidel stencil by stencils computed
per second (Ste/s). We again applied the locality optimizations described in the
last section, to our sequential implementation and as a result we increased the
performance from 283 to 415 MSte/s.

Figure 2(a) shows a visualization of the data dependencies of the Gauß-Seidel
stencil. It is important to notice that the upper and the left values are from the
current iteration, whereas the right and bottom value are from the previous
iterations. The parallelization requires using the wavefront pattern [Pfi98]. In
a wavefront, the data matrix is divided into multiple diagonals as shown in
Fig. 2(b). The elements in one diagonal can be calculated in parallel. Tiling can
again be applied to increase data locality by creating tiles of V .

We implemented both a strict and relaxed version of the wavefront pattern.
The strict version directly follows the wavefront pattern and only calculates the
diagonals in parallel, whereas the relaxed version breaks up the diagonals. In
the relaxed version we split up the matrix in x-dimension in multiple columns
and assign these columns to threads with a round robin scheduling and use
one counter per column, which indicates how much of that column has already
been updated in the current iteration. These counters are shared by all threads
and are used to identify how deep the current thread can calculate the current
column, before it has to wait on the thread calculating the column left from
it. We have implemented two different ways to prevent the race conditions at
accessing the shared counters. The first version uses OpenMP lock variables to
guard the counters. See Listing 1 for the source code. The second version uses
an atomic function provided by the host system to update the counters. We
cannot use OpenMP atomic operations as OpenMP does not allow threads to
read a variable that has been updated by another thread without synchronizing.
When using the host system atomic operation to update the counter, the read
must only be joined by a flush/fence. Tiling to x- and y-dimensions is applied in
both versions. Tiling to the y-dimension reduces the number of times the shared
counters are updated, so larger tiles decrease the number of lock operations,

Algorithm 1 Manual blocked Gauß-Seidel

1 int nb blocks = s i z e / b l o c k s i z e ;
2 int ∗ counter = new int [nb b locks +1] ;
3 counter [0] = s i z e −1;
4 // i n i t i a l i z e a l l o ther counters wi th 0
5 omp lock t ∗ l o c k s = new omp lock t [nb b locks +1] ;
6 // c a l l omp in i t l o c k f o r a l l l o c k s
7 #pragma omp paral le l for
8 for (int x=1; x<s i z e −1; x+=b l o c k s i z e) {
9 int y = 1 ;

10 const int x b lock = x/ b l o c k s i z e ;
11 while (y<s i z e −1) {
12 omp set lock (& l o c k s [x b lock]) ;
13 const int l c oun t e r = counter [x b lock] ;
14 omp unset lock (& l o c k s [x b lock]) ;
15 for (; y<l c oun t e r ; y+=b l o c k s i z e) {
16 for (int xx=x ; xx<x+b l o c k s i z e ; ++xx)
17 for (int yy=y ; yy<y+b l o c k s i z e ; ++yy)
18 V[yy] [xx] = (V[yy] [xx−1] + V[yy] [xx+1] +

V[yy−1] [xx] + V[yy +1] [xx]) /4 ;
19 omp set lock (& l o c k s [x b lock +1]) ;
20 counter [x b lock +1] += b l o c k s i z e ;
21 omp unset lock (& l o c k s [x b lock +1]) ;
22 }
23 }
24 }

however also reduces the chance of having the rows y, y − 1 and y + 1 in the
cache.

To achieve better performance, we applied multi-level tiling. We continue to
use large tiles to reduce the number of lock operations and subdivide the large
tiles into smaller tiles to expose the best data locality. However multilevel tiling
increases the overhead and decreases performance when running with 8 threads.

As a final optimization we moved from fixed to dynamic tile sizes for the
large tiles. Our dynamic implementation chooses smaller tiles at the beginning
and the end of the data matrix and larger ones in the middle. Dynamic tile
sizes allow more work to be done in parallel, since e. g. the calculation of the
second column can only be started if the first tile of the first column is calculated.
However, this optimization imposes additional overhead, while on our test system
the performance loss due to data dependencies is rather small. As a result, the
performance is almost identical to the one using static tile sizes. We expect
dynamic tile sizes to be useful on systems with more cores and additional memory
bandwidth to satisfy all cores.

Figure 3 shows the achieved bandwidth with the different versions for cal-
culating a matrix of size 163862 with 100 iterations. We use double precision
for our calculations. Our fully optimized implementation sustains a performance
of over 1000 MSte/s. In the best case, the Gauß-Seidel stencil requires both

Fig. 3. Gauß-Seidel performance

one element read and one written to/from main memory per stencil. With 16
bytes transfered between the CPU and main memory our implementation uses
a bandwidth of over 16 GB/s, which is about 83% of the performance measured
with the STREAM benchmark (Tab. 2). The best performance is achieved when
using 8 threads with single level tiling. The additional overhead of multilevel
tiling reduces performance with 4 or 8 threads, however the increased data lo-
cality helps to outperform single level tiling with less threads. We can see that
using locks instead of atomic operations decrease our performance by about 6%
when using 4 cores. With one thread the parallel atomic version performs almost
identical to the sequential version.

5 Locality-aware OpenMP syntax

In the last two sections, we have described our experiences with locality opti-
mizations in two scenarios. The first scenario was matrix-matrix multiplication,
which only consists of a perfect loop nest and a trivial parallelization. The loop
transformations could have automatically been applied by a compiler, however
our compilers did not. Our second scenario also benefits from tiling by both in-
creased data locality and decreased number of lock operations. The paralleliza-
tion of the second scenario was more complex and the code is not a perfect loop
nest. We expect that it is hardly possible for a compiler to identify all required
optimizations, however we show in the rest of this section that the OpenMP
syntax can be enhanced to let developers tell the compiler which optimizations
should automatically be applied. Furthermore we sketch how compilers can do
the required transformations and discuss the impact on other parts of OpenMP.

We start with the matrix-matrix multiplication as an easy example to de-
scribe our advanced OpenMP syntax. Algorithm 2 shows the new syntax for

Algorithm 2 Matrix multiplication with improved OpenMP

1 #pragma omp paral le l for schedule(blocked , 64)
2 for (int i =0; i<s i z e ; ++i)
3 #pragma omp for schedule(blocked , 64)
4 for (int k=0; k<s i z e ; ++k)
5 #pragma omp for schedule(blocked , 64)
6 for (int j =0; j<s i z e ; ++j)
7 #pragma omp block
8 C[i] [j] += A[i] [k] ∗ B[k] [j] ;

the matrix multiplication. We introduce both a new scheduling variant called
blocked and the ability to nest the #pragma omp for pragma without using
nested parallelism. The OpenMP for pragma tells the compiler that the loop
iterations can be carried out in any order, which is true for all loops of the ex-
ample, and the new blocked schedule tells the compiler to apply tiling to this
loop.

Compilers tile the loops annotated with schedule(blocked). The size of the
tiles can be specified as a second parameter of the scheduling-clause or may be
automatically determined by a compiler. Having the compiler determine the tile
size may not result in the optimal result, but in a reasonable good outcome.
Multilevel tiling may be specified by adding not one tile size, but multiple tile
sizes to the schedule clause. Explicit tiling can be specified by an additional
pragma parameter to identify the variables to which it should be applied. The
outer loop, which is generated when tiling is applied to the original loop, remains
at the position in the code where the original loop was. The inner loop, in
contrast, gets moved directly in front of what we call the instruction block. The
instruction block should contain only the code that must be executed in every
loop iteration. It is identified by #pragma omp block and there may only be one
instruction block in a tiled loop. In Alg. 2 only line 8 is the instruction block
and all newly created loops will be moved in front of this line. When multiple
loops are defined as schedule(blocked), the loop order in front of the block
is identical to the one of the original loops. It is expected that users make sure
that the modified code is still correct, that is e. g. only annotate loops that be
tiled. In perfect loop nests where the innermost loop body is the instruction
block – as it is the case for the matrix multiplication – this is given if all loop
iterations can be carried out in any order. If the loop body consists of more
than the instruction block, every code outside the instruction block will only be
executed once per tile. We discuss this behavior based on our Gauß-Seidel code
next.

The extensions introduced up till now do not allow user to specify de-
pendencies between tiles, as they are used in the Gauß-Seidel example. List-
ing 3 shows the code with new library functions that overcome this limita-
tion. omp_num_blocks() returns the number of tiles a tiled loop is split into,
omp_block_num() returns the number of the tile currently calculated by the
calling thread and omp_block_size() returns the size of tile. The functions are

Algorithm 3 Gauß-Seidel with improved OpenMP

1 int ∗ counter ;
2 omp lock t ∗ l o c k s ;
3 #pragma omp paral le l for schedule(blocked)
4 for (int x=0; x<s i z e ; ++x) {
5 #pragma omp single
6 {
7 counter = new int [omp num blocks () +1] ;
8 counter [0] = s i z e ;
9 // i n i t i a l i z e a l l o ther counters wi th 0

10 l o c k s = new omp lock t [omp num blocks () +1] ;
11 // c a l l omp in i t l o c k f o r a l l l o c k s
12 }
13 int y = 0 ;
14 int x b lock = omp block num () ;
15 while (y<s i z e) {
16 omp set lock (& l o c k s [x b lock]) ;
17 int l c oun t e r = counter [x b lock] ;
18 omp unset lock (& l o c k s [x b lock]) ;
19 #pragma omp for schedule(blocked)
20 for (; y<l c oun t e r ; ++y) {
21 #pragma omp block
22 V[y] [x] = (V[y] [x−1] + V[y] [x+1] + V[y−1] [x] +

V[y +1] [x]) /4 ;
23 omp set lock (& l o c k s [x b lock +1]) ;
24 counter [x b lock +1] += omp block s i z e () ;
25 omp unset lock (& l o c k s [x b lock +1]) ;
26 }
27 }
28 }

always bound to the tiled loop they are directly part of, meaning in our example
omp_block_size() (Alg. 3, line 24) is bound to the second for-loop. The code
to be generated based on Alg. 3 can be found in Alg. 1.

These functions allow users to specify dependencies between tiles. For exam-
ple in the Gauß-Seidel example one counter and lock per tile in the x-dimension
is allocated. In the y-dimension the counter is only updated once per tile, since
the update of the code is not part of the instruction-block. To achieve this, first
the two created inner loops must be moved in front of the instruction block
and the instruction block must be modified so that it no longer uses the old
loop indexes but the indexes of the newly created loops. Furthermore the library
functions must be created, that is for example omp_block_num() must returns
the index of the outer tiling loop and omp_block_size() the size of the tiles.

The newly suggested blocked loop scheduling and the existing static schedul-
ing both offer a form of loop tiling. It would have been possible to reuse the
static scheduler for our modified tiling approach – e. g. the existing behavior is
always used when there is no instruction block present. However since, in con-

trast to the existing scheduling variants, blocked may influence the correctness
of the program, we decided to not reuse the existing name. The extensions play
well with all data sharing clauses, however the concept will not ease of tiling
in SPMD style OpenMP programs using the threadprivate directive for data
privatization, since one thread will only execute a subset of tiles and not the
whole loop iteration space. We see no way of the extensions would interfere with
the existing synchronization concept. Adding the new functions to the runtime
system should be rather trivial, as they mostly must only return a value being
made available by the tiling.

It is left for future work to analyze the usability of the new extensions for
upcoming many-core architectures. However we expect that an user controlled
tiling mechanism will be needed for all tile-based many-core architectures, as
for example Intel’s Single-chip Cloud Computer (SCC) or GPUs. In tile based
many-core system it may for example be possible to have a set of closely coupled
cores working on a single tile. The new extensions do not tackle the problem
of NUMA like remote memory, but concentrate on a way to easily improve
cache usage in loop based code. Further research is necessary to identify ways
to support NUMA remote memory.

6 Related work

A similar extension for OpenMP has been suggested by Gan et al. [GWMG09],
however it offers a subset of the functionality we present. Especially they fo-
cus only on perfect loop nests and do not offer direct access to the blocks
nor allow using tiles beyond data locality. Compilers like IBMs XLC/C++ and
SGI MIPSpro C/C++ offer directive-based support for loop tiling. Extensions
for the ZPL [DCS02] and SAC [Sch98] language provide tiling, even though again
not with direct access to the tiles. High Performance Fortran (HPF) offers tiling
as part of the language. Loop tiling in general has been worked on for several
years and discussed in several aspects, e. g. when a compiler can automatically in-
corporate loop tiling [AMP00]. Optimizations on stencil computation have been
analyzed again for several years, a recent study has e. g. been done by Datta et
al. [DKW+09].

7 Conclusion / Future work

We demonstrated tiling on two scenarios with the result of increased perfor-
mance. The main performance increase resulted from the increased data locality
of tiling, however tiling also reduced the number of lock and atomic operations.
We furthermore demonstrated that using the optimization technique of processor
local storage, which is well-known in the GPGPU realm, is beneficial on current
CPUs as well. As an addition, we experimented with dynamic tile size in the
wavefront pattern to increase the amount of work that can be done in parallel.
As a major contribution we showed that these optimizations techniques could
be added to OpenMP with only small changes.

Making the notion of tiles available in OpenMP will not only enable develop-
ers to specify data locality and thereby increase performance on current CPUs,
but lays out the foundation for future work to effectively deploy OpenMP on
hardware which natively requires blocks, e. g. GPUs. Further work is required to
check if the suggested extensions may result in ambiguous situations, in scenarios
different from ones shown in this paper.

References

[AMP00] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling imperfectly-
nested loop nests. In Supercomputing ’00: Proceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM), page 31, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

[BFGH07] Michael Bader, Robert Franz, Stephan Günther, and Alexander Heinecke.
Hardware-oriented implementation of cache oblivious matrix operations
based on space-filling curves. In PPAM, volume 4967 of Lecture Notes in
Computer Science, pages 628–638. Springer, 2007.

[BGS94] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transfor-
mations for high-performance computing. ACM Comput. Surv., 26(4):345–
420, 1994.

[CSG98] David Culler, J.P. Singh, and Anoop Gupta. Parallel Computer Archi-
tecture: A Hardware/Software Approach. Morgan Kaufmann, 1st edition,
1998. The Morgan Kaufmann Series in Computer Architecture and Design.

[DCS02] Steven J. Deitz, Bradford L. Chamberlain, and Lawrence Snyder. High-
level language support for user-defined reductions. J. Supercomput.,
23(1):23–37, 2002.

[DKW+09] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf,
and Katherine Yelick. Optimization and performance modeling of stencil
computations on modern microprocessors. SIAM Review, 51(1):129–159,
2009.

[GWMG09] Ge Gan, Xu Wang, Joseph Manzano, and Guang R. Gao. Tile Reduction:
The First Step towards Tile Aware Parallelization in OpenMP. In IWOMP
’09: Proceedings of the 5th International Workshop on OpenMP, pages 140–
153, Berlin, Heidelberg, 2009. Springer-Verlag.

[McC95] John D. McCalpin. Memory bandwidth and machine balance in current
high performance computers. IEEE Computer Society Technical Commit-
tee on Computer Architecture (TCCA) Newsletter, pages 19–25, December
1995.

[Pfi98] Gregory F. Pfister. In search of clusters (2nd ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1998.

[Sch98] Sven-Bodo Scholz. On defining application-specific high-level array oper-
ations by means of shape-invariant programming facilities. In APL ’98:
Proceedings of the APL98 conference on Array processing language, pages
32–38, New York, NY, USA, 1998. ACM.

[Wol95] Michael Joseph Wolfe. High Performance Compilers for Parallel Comput-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

